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SOME RESULTS RELEVANT TO STATISTICAL CLOSURES FOR COMPRESSIBLE

TURBULENCE

J. It, I:tISTORCELLI*

Abstract. For weakly compressible turbulent fluctuations there exists a small parameter, the square of

the fluctuating Mach number, that allows an investigation using a perturbative treatment. The consequences

of such a perturbative analysis in three different subject areas are described: 1) initial conditions in direct

numerical simulations, 2) an explanation for the oscillations seen in the compressible pressure in the direct

numerical simulations of homogeneous shear, and 3) for turbulence closures accounting for the compressibility

of velocity fluctuations.

1) Initial conditions consistent with small turbulent Mach number asymptotics are constructed. The

importance of consistent initial conditions in the direct numerical simulation of compressible turbulence

is dramatically illustrated: spurious oscillations associated with inconsistent initial conditions are avoided,

and the fluctuating dilatational field is some two orders of magnitude smaller for a compressible isotropic

turbulence. For the isotropic decay it is shown that the choice of initial conditions can change the scaling

law for the compressible dissipation.

2) A two_time expansion of the Navier-Stokes equations is used to distinguish compressible acoustic and

compressible advective modes. A simple conceptual model for weakly compressible turbulence - a forced

linear oscillator -- is described. It is shown that the evolution equations for the compressible portions of

turbulence can be understood as a forced wave equation with refraction. Acoustic modes of the flow can be

amplified by refraction and are able to manifest themselves in large fluctuations of the compressible pressure.

3) The consequences of a small turbulent Mach number expansion for the closure of two covariances

appearing in the kinetic energy equation, the pressure-dilatation and the dilatational dissipation, are investi-

gated. Comparisons with different models and a discussi0n of the results in the context of the homogeneous

shear is given. In agreement with observations of DNS of compressible turbulence, the dilatational covari-

ances can not account for the large reductions in the growth of compressible shear layers.

Key words. Dilatation, compressible turbulence, turbulence modeling.

Subject classification. Fluid Mechanics

1. Introduction. The phrase weakly compressible describes the turbulence relevant to many aerody-

namic applications. Several interesting insights into the nature of compressible turbulence can be found by

investigations of the weakly compressible limit: the weakly compressible limit allows a perturbative treat-

ment. Such weakly compressible investigations are relevant to compressible shear layers encountered in

practical applications.

For weakly compressible fluctuations the turbulent Mach number squared is small, M_ << 1, and serves

as a small parameter. Here M_ = uc/c; uc is a fluctuating velocity scale and c is the local mean speed

of sound. The turbulent Mach number reflects the weakly compressible nature of the turbulence -- the
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meanflowitselfmaybehighly supersonic. An analytical development for the covariances of the fluctuating

dilatation suitable for shear flows has been given in Ristorcelli (1997). This article describes the implications

of such an analysis for the initial conditions in the direct numerical simulation of turbulence as discussed in

RistorceHi and Blaisdell (1997). This article also reports an extension of that analysis that can explain the

peculiar oscillations seen in the DNS of homogeneous shear. In the process a simple conceptual model the

forced linear oscillator - for compressible turbulence is derived. This article also explores, in the context of

the DNS, representations for terms requiring closure in the kinetic energy equation.

The primary subject of this article, given that it is to appear in the proceedings of a conference de-

voted to turbulence modeling, is a summary of recent advances made in the understanding of the effects of

compressibility as related to turbulence models for engineering flows. To this end a substantial portion of

space is spent understanding numerically generated data bases which are used to develop turbulence models.

This is done to insure that the physics of the numerically simulated flow is consistent with the engineering

problem and thus constitutes a relevant data base for statistical closures relevant to engineering flows.

This article is divided into three separate sections.

Section 2 treats initial conditions for the DNS of compressible turbulence. It is shown that as a con-

sequence of a finite turbulent Mach number there are finite non-zero density, temperature and dilatational

fluctuations. These fluctuations are, to lowest order, specified by the incompressible field. These results

are relevant to initial conditions on thermodynamic quantities employed in DNS of compressible turbulence

that are started using incompressible fluctuating velocity fields. Use of these initial conditions gives rise to

a smooth development of the flow, in contrast to cases in which these fields are specified arbitrarily (or set

to zero). For the isotropic decay it is shown that the choice of the initial conditions appears to change the

scaling law for the compressible dissipation. It will be seen that, for the isotropic decay, the well accepted

M 2 scaling for the compressible dissipation appears to be an artifact of an evanescent wave field set up by

the initial conditions.

In Section 3 a simple conceptual model for weakly compressible turbulence is described: the evolution

equations for the compressible portions of turbulence in the presence of a homogeneous shear are seen to

obey a forced wave equation with refraction. The forcing and refraction effects are a function of the shear

rate as indicated by a gradient Mach number.

In Section 4 the results of the modeling of Ristorcelli (1997) are explored. It is shown that Mt 4 scaling

for the compressible dissipation is consistent with the DNS of compressible turbulence results with the

appropriate initial conditions. A scaling of M 2 for the compressible dissipation is consistent with the DNS if

"i_consistent" initial conditions are used. A verification of the scalings and comparision with other models

for the pressure_dilatation is also conducted.

2. Initial Conditions. For turbulence with finite turbulent Ma_h number there is a finite effect of

compressibility. A methodology, consistent with finite Mach number asymptotics, for generating initial

conditions for the fluctuating pressure, density, temperature, and dilatational velocity fields is described.

Relationships between diverse thermodynamic quantities appropriate to weakly compressible turbulence are

derived. The phrase consistent initial conditions is used to denote initial conditions that are suggested by

low turbulent Mach number asymptotics.

2.1. Single time perturbation analysis. RistorceUi (1997) has conducted a small Mach number

expansion of the compressible Navier-Stokes equations. Some of those results, as they are relevant to the

present subject, are now briefly sketched. The problem of compressible turbulence can bc viewed as a

singular perturbation. The inner problem is related to the acoustic source problem with time and length



scalesbasedontheturbulencetimeandlengthscales,g/uc and g. Here uc is the turbulence velocity scale

and e is the turbulence integral length scale. The outer problem is the acoustic propagation problem, which

in the low M 2 limit has time and length scales )_/c = g/uc and _ = g/Mt. The inner expansion is relevant to

the compressible turbulence modeling problem of acoustically compact flows, Ristorcelli (1997). The outer

problem is not relevant to the problem of compressible turbulence for a compact fields, Ristorcelli (1997).

The compressible Navier-Stokes equations in a form convenient for weakly compressible high Reynolds

number turbulence are

(1) p,_ + u*kp,k= -- (1 + p)up,p

u* caw
(2) (l+p)[ i,t +u*ku;,k] + -_- P,i =0

1
(3) V- "YP = _/(_/- 1)P 2

(4) p,- - _ p,. = ((1+ p)<_;),,,.

The last equation, a wave equation, is derived from continuity and momentum. The velocity field is decom-

posed according to ui = vi + ¢2wi + ... , where vi represents the solenoidal velocity field and the the small

parameter is e2 = ffM_, where Mt --- uc/c. Thus d = uili = c2w_,_ + .... The thermodynamic variables are

decomposed according to a perturbation about a mean state, (P, fi, T), thus p* = P(1 + p), p* =/5(1 + p)

and T* = T(1 + 0). Perturbation series of thc form p = e2 [p_ + ¢2p2 + ...] are assumed. To lowest order

(5) vi,t + vpvi,p + pi,i = 0

(6) vi, = 0

(7) p_,z =- (v_vj).j
1

(s) p_= -p_

(9) 01 3,- 1 Pl.

-y

The zeroth-order problem is the incompressible problem. The fluctuating pressure is not an independent

variable but is set by the solenoidal velocity fluctuations and which also produces the density and temperature

fluctuations. On the inner scales the incompressible pressure fluctuations dominate the pressure field. This

pressure is sometimes called the "pseudo-pressure" in contradistinction to the propagating pressure associated

with the sound field. The last two equations come from the ideal gas law. In light of the homogeneous shear

flow simulations of Blaisdell et al. (1991, 1993) (the fluctuations were seen to follow a polytropic gas law

with coefficient close to the adiabatic value), the adiabatic case is treated.

The next order expansion for the continuity equation produces a diagnostic relation for the fluctuating

dilatation,

(10) -'_d = Pl,t + vkpl,k .

The dimensional equivalents of the above equations, using Pl = p,/p, 01 = O'/T, pl = p'/P are

(11)

p, --- i p,--j

O' = 7 - 1 p,
7Rp

V I-?Pd' = pl,t -t- kP ,k ,



wherepr is the solenoidal pressure fluctuation. For finite turbulent Mach number there are unique specified

finite fluctuations of density, temperature, dilatation and pressure.

Obtaining an initial condition for the compressible portion of the velocity, wi, which reflects the relation

(I1) is possible, Ristorcelli and Blaisdell (1997). The fluctuating pressure pl needed in (11) is obtained

from the Poisson equation (7), and its time derivative can be found by taking the time derivative of (7) and

substituting for the time derivative of the velocity from (5). This gives a Poisson equation for pl ,t,

(12) (pl,,),jj = 2 +pl,, ,,j.

Solving the two Poisson equations (7) and (12), the dilatation is found from (10). For homogeneous turbulence

the dilatational velocity can be found from the dilatation by working in Fourier space. As the dilatational

velocity, wi, is irrotational the Fourier coefficients of the velocity are aligned with the wavevector, k, and

they can be found from

kj^
(13) _j = -i-_d.

The dilatational velocity w_ is then combined with the solenoidal velocity vi to obtain the full initial ve-

locity field. This set of initial conditions, (11) and(13), will called the consistent (or pseudo-sound) initial

conditions.

2.2. Simulations and Results. In order to determine the effectiveness of the new initial condition

method, direct numerical simulations of decaying isotropic turbulence are carried out with three different

types of initial conditions, Ristorcelli and Blaisdell (1997). Simulations were performed with initial turbulent

Mach numbers Me = 0.231, 0.115, and 0.058. The initial turbulent Reynolds number ReT = _q4/¢y = 200

where q2 = (puiul)/-_, and e is the dissipation rate of turbulent kinetic energy per unit volume. The mean

density gradient is zero. For the present analysis and simulations the Reynolds and Favre averages are the

same. Details about the simulation method can be found in Blaisdell et al. (1991).

1. The first type of initial conditions, IC1, has zero density and pressure fluctuations. The velocity

field is solenoidal.

2. The second type of initial conditions, IC2, has zero density fluctuations; the pressure is found by

solving the Poisson equation (7). The velocity field is again solenoidal.

3. The third type of initial conditions, IC3, the fluctuating pressure field is found by solving the Poisson

equation (7). The relations (11) determine the density and dilatational fluctuations from (7). The

dilatation is used to determine the dilatational velocity from (13).

2.2.1. Magnitude of the dilatation. Data from the Me -- 0.231 run has been chosen to illustrate

the effect of the different initial conditions. Figure 1 shows the development of the variance of the dilatation,

(dd_. It is clear from the figure that there are sizeable oscillations near the origin for the first two initial

conditions as the flow seeks to adjust to "inconsistent" initial conditions. This is not the case for the pseudo-

sound initial conditions, IC3. Also interesting to note is the fact that the variance of the dilatation for IC1

is one order of magnitude larger than IC3. In general, at lower Mt this difference is more pronounced; at

Me -= 0.058 the difference is two orders of magnitude. This excess dilatation is associated with an evanescent

wave field, see §3, set up by an inappropriate choice of initial conditions and is not the dilatation due to the

compressible turbulence field.

An intuitive argument can be given to explain the behavior seen in Figure 1. One might speculate

that there is a wave field generated by the inconsistency between the pressure, density, tcmperature, and



dilatationalfieldswhosedecayrateis farslowerthantheturbulencedecay.Thisgivesriseto a background
evanescentacousticradiation,for ahomogeneousflow,that laststhecourseofthesimulation.ForIC1the
fluctuatingpressurefieldissetto zero.Thiscanbeviewedasacombinationof theincompressiblepressure
satisfying(7)plusanacousticpressurefieldwhichexactlycancelstheincompressiblepressurefield- sothat
the initial fieldis zero.Astimeevolvesthetwopressurefieldsbecomedecorrelated,givingriseto large
acousticpressureanddilatationfluctuations.For IC2thepressurefieldis correct;however,thereis no
dilatationfield.Againthiscanbeviewedasacombinationofthedilatationfoundfrom(7)plusanacoustic
dilatationfieldthat exactlycancelsthis. As thc flowevolvesawayfromtheinitial conditions,the two
dilatationfieldsbecomedecorrelatedsothatoneis leftwiththecorrectdilatationplusacousticfluctuations
ofdilatationandpressureassociatedwiththeslowlydecayingevanescentfield.Theevolutionof thepressurc
varianceand(pd)(notshownhere,Blaisdell(1996))corroboratesthispicture.

2.2.2. Scalingof the dilatation. Figure2,providedbyProfessorC.A.Blaisdell,isaveryrichfigure
withmanyimplications.Figure2isagraphicindicationoftheimportanceof initialconditions;it indicates
thescalingofthedissipationwith theturbulentMachnumber.

Thefiguredescribestheisotropicdecayconductedfor threedifferentinitial turbulentMachnumbers.
Thethreedifferentinitialconditionsareseentoproducetwodifferentscalingsforthecompressibledissipation
or, equivalently,thevarianceof thedilatation.Fortheconsistentinitial conditionsthedilatationis seen
to haveM_ scaling. This is indicated by the upper solid line. For the two sets of "inconsistent" initial

conditions an M 2 scaling, as indicated by the lower dashed lines, is seen. The M_ scaling is the scaling

usually agreed on for some models of the compressible dissipation it is a scaling that is arrived at from

observations of DNS with inconsistent initial conditions.

2.3. Conclusions. It has been shown that as a consequence of a finite turbulent Mach number there

are finite non-zero density, temperature and dilatational fluctuations. These fluctuations are, to lowest order,

specified by the incompressible field. These results are relevant to initial conditions on thermodynamic quan-

tities employed in DNS of compressible turbulence that are started using incompressible fluctuating velocity

fields. A potential practical consequence of the present results is a reduction in the amount of computational

effort spent adjusting to transients associated with the relaxation from arbitrary initial conditions.

The major point is that the initial conditions on the fluctuating thermodynamic variables of density,

temperature, pressure, and dilatation should not be arbitrarily specified in the DNS of compressible turbu-

lence. To lowest order these fluctuations, whose nature is connected to the underlying fluctuating vortical

turbulence field, are generated by the pressure field associated with the divergence-free portion of the vortical

motions. The methodology for generating initial conditions presented here allows the flow to develop more

naturally.

The significance of the initial conditions is likely to depend on the type of flow considered; for example

the effects described above are likely to be much less evident in a homogeneous shear in as much as the

final M_ substantial exceeds the initial Mr. Nonetheless, one is led naturally to speculate about the nature

and relevance of simulations that start from arbitrary initial conditions. There are surely a large number

of interesting studies in which one can study the relaxation from diverse arbitrary initial conditions. It is

also possible to argue that they have practical value. However, the strongest argument, given the current

engineering problems and the lack of knowledge regarding the effects of compressibility, can be made for

the initial conditions in which the density, temperature, pressure, and dilatational fields are related to the

underlying local turbulence field that is the source of the fluctuations. This seems better than an arbitrary

guess at initial conditions that may or may nothave physical relevance or meaning.



3. Two-tlming compressible turbulence. The present discussion is limited to a physical under-

standing of the effects of compressibility as arrived at mathematically. A two-time expansion of the com-

pressible Navier-Stokes equations is used to investigate the compressible modes of a turbulent flow. Such a

two-time scale analysis sheds substantial insight on the nature of compressibility.

The present treatment of the problem c_mtrasts to that given by Ristorcelli (1997). That treatment, in

which the the small parameter was also the t_lrbulent Mach numbers, used a single time expansion. The

single time expansion was a consequence of nondimensionalizing time with a time scale characteristic of

the turbulence, the eddy turnover time. Such an analysis is suitable for statistical closure that evolves on

a nonlinear advective time scale. Here the investigation is directed towards distinguishing quantities that

evolve on a fast time scale from those evolving on a slow time scale. It will be seen that the quantities evolving

on the fast time, as can be assessed by their evolution equations, cannot be understood as turbulence. The

fast time equations suggest that it is useful to interpret the fast time solution as an evanescent wave field.

It is appropriate to indicate the observations that motivate the present analysis. The experimental data

that suggested this investigation is the DNS of the homogeneous compressible shear as might be seen in

Blaisdell, Mansour and Reynolds (1991, 1993), Sarkar, Erlebacher and Hussaini (1991), or Sarkar (1992).

Figure 3 is the pressure-dilatation from Blaisdell's recent simulations; the instantaneous ensemble averaged

as well as the time averaged pressure-dilatation time history is shown. The initial conditions follow those

outlined in Ristorcelli and Blaisdell (1997). Even with the initial conditions suggested by a single-time

small turbulent Mach number expansion there is a build up of rapidly varying fluctuations in the pressure-

dilatation. This is also seen in the earlier simulations by Sarkar (1992); in Sarkar's (1992) simulations the

oscillations occur earlier and this is consistent with the choice of initial conditions. The oscillations in the

instantaneous pressure-dilatation exhibits a time scale characteristic of the sound crossing time over an eddy,

g/c, as can be estimated from the DNS. The evolution of the time averaged trace evolves on a slower time

scale, the eddy turnover time, g/uc _', k/¢. The appearance of these two disparate time scales suggest that

a two-time analysis of the compressible DNS may be appropriate to further understand the nature of the

physics. Consider a characteristic fluctuating velocity, u¢, say related to the kinetic energy of the turbulence
2

k, u c = 2k. The ratio of these two time scales is the fluctuating Mach number:

(14) M,----- u____.
C

If it is assumed that the ratio of the eddy crossing time to the turnover time is small, _ >> _, (or

equivalently the Mach number is small) a multi-scale expansion of the Navier-Stokes equations will produce

a useful model. The small parameter in the two-time problem is now e - M_. In the single time prob!em=

the appropriate small parameter was M 2. In the present development, as will become clear, the fluctuating

Mach number plays two unique roles: It indicates the relative time scales of advection versus propagation -

in this role it appears to the first power. It is also a measure of the dynamical effects of the compressibility

of the fluctuating field in this role it appears to the second power.

3.1. Two-tlming: analysis. A set of equations describing and distinguishing the relevant aspects

of the flow physics is now derived. The procedure is straightforward and standard for those familiar with

perturbation methods. Perturbing about a reference state, (Poo, poo), the dimensional pressure, density and

velocity are taken as

(15) p* = p_(1 +p)

(16) ,* = ,o_(1 + ,).



(17) u* = uc(vi + Cww_)

where

(is) p = ¢0(p, + ¢1 pc)

(19) P = ¢0(P8 + ¢1 Pc).

The dependent variables are now all nondimensional: Ivy, w_, ps, Pc, Ps, Pc] are in units of [uc, p_, pool. These

forms of the dimensional variables are then inserted into the compressible equations, (1), (2), (3) of §2.

The leading order problem, as in §2.1, is described by equations used for a solenoidal velocity field with

characteristic time, length and velocity scales [_, g, uc],

(20) vp,p = 0

(21) vi,t + vkvi,k + Ps,i = 0

(22) p_,jj = -- (vivj),O

(23) "YP8 = Ps-

Note that the leading order density fluctuations are given by p_. The subscript "s" is understood to indicate

solenoidal as the field v_ has zero divergence. The gauge function ¢0 -- 3'Mr2 in order to obtain a meaningful

balance with pressure.

The compressible portion of the problem, [Pc, Pc, wi], is described by thc following set of equations:

2

[1 + ¢0(ps + ¢lpc)][wi,_ +vkw,,_ +wkv_,k +¢_WkW_,k]¢_ + c;¢ ¢0¢1p_,i =

(24) = -¢0(P_ + ¢lpc)[vi,t +VkVi,k]

(25) ¢0¢l[Pc,t +vkpc,k +¢wWkpc,k] + [1 + ¢0(Ps + ¢lpc)]Wk,k Cw = --¢0[P_,, +Vkps,k ]
1

(26) ¢o¢1(Pc -- 3'Pc) = _/(7 -- 1)¢_(p_ + ¢1pc) 2.

It is important to note that the variable time is dimensional; length has been rescaled with g so that the

convective operators have dimensions of inverse time. The scalings for length and time will determine ¢1 and

¢_. The method of dominant balance, after choosing the acoustic length and time scales, indicates that the

only self-consistent choices for the scale functions are Cw = Mt 2 and ¢1 = Mt. Additional details relevant to

a similar procedure, though in a different context, can be found in Ristorcelli (1997A).

The compressible problem evolves on two time scales. The fast time scales with g/c. The slow time scales

with g/uc. Following the usual multi-scale ansatz the original time variable is replaced with two independent

time variables, [t] _ [to, tl]; to is the fast time scale and tl is the slow time scale. The multi-time-scale

ansatz for a dependent variable is f(x,t) = f(x, to,tl). The time derivative, following a fluid particle of

f(x, t) is then written

(27) D D D
D--t f(x, t) = -_o f(x, to, tl) + e-_l f(x, to, tl),

where the small parameter is now understood to be • = Mr. The equations are made nondimensional with

the integral length scale, g, and the fast time scale, g/c. The compressible dependent variables are now

expanded in a regular perturbation expansion, f = fo + ell + .... A Reynolds decomposition of the velocity

field is used: the mean flow is characterized by a shear of magnitude S. The mean flow is assumed, for

present purposes, to be homogeneous with V_,i = 0.



3.2. The leading order primitive equations. The leading ordcr compressiblc problem satisfies the

following momentum and continuity equations:

(28) D S£-- w0i + [-c-] wokVi,k + Po,_ = -Ps [_] vkV,,k
Dto

(29) -- po+ Wok,k= - [ Ps + vkps, ].
Dto

The leading order equation of state, "/Po = P0 has been used to eliminate the density in favor of pressure.

There are several items worth noting:

1. The so-called gradient Maeh number _ appears as an independent parameter. It appears in what

is called a production term (also sometimes called a refraction term).

2. The forcing terms are all functions of the slow time: Ps = ps(x, tl),Vi = vi(x, tl).

3. The equations are linear: there is no nonlinear compressible-compressible mode coupling in thc low

Mach number limit. Nonlinearity is only a characteristic, as one might expect in a perturbative

treatment, of the incompressible modes.

4. The solution is written as a sum of homogeneous and particular solutions which, to leading order,

have a different dependence on the fast (to) and slow (tl) time variables, Ristorcelli (1997A):

Woi = WOiE(X, to) -_- Woip(X, tl)

Po = PoE(X, tO) + pop(X, tl).

5. The initial value problem, [wO,E(X, to), PoE(X, to)], is the solution of the homogeneous problem:

D S£
(30) Dto woi + [-_-] wokV_,k + P0,_ = 0

D

(31) -_o Po + Wok,k --_ O.

These are the equations of an evanescent wave field. The solution is a function of, to leading order,

of only the fast time.

3.3. A concomitant wave equation. If one takes the divergence of the momentum equation, (28),

and the Lagrangian derivative of the continuity equation, (29), one obtains the following third-order wave

equation with source:

Dto [D-_o2p°-V2p°] + 2[ ]V,,kP0,ik --4[--_-1 Vk,iV,,jw0j,k=2[ ]Vj,ifi,j

On the right hand side fi = -Ps [_] vkVi,k, which is known in terms the solenoidal field. The problem

can be viewed as a linear fourth order forced oscillator, whose natural time scale, t0, is fast compared to the

forcing time scale, tl. The homogeneous solution satisfies the initial value problem and only varies on the fast

time scale; the particular solution varies on the slow time scale. If the initial conditions are homogeneous,

the evanescent wave field with the fast eigenmodes is not stimulated. In such a case the solution for the

compressible modes follows the slow time forcing with a phase lag related to the damping.

In the absence of forcing the homogeneous problem satisfies the following wave equation

V D 2 S£
mto [_o Po - _y2p0] + 2 [-C-] V_,kPO,ik=4 [__]2Vk,i V_,jwoj,k"(33)

For a parallel unidirectional shear the right hand side is zero,

D [ P0 V2p0] + 2[ ]Vi,kPo,ik O,(34) - :
Dto -_o



and the order of the system is reduced. A equation similar in form has l_een deduced by Lilley (1996). Apart

from some numerical factors the major difference from Lilley's result is that, as the equation is expressed

on the fast time scale, it describes specifically the fast modes of the flow. This is the wave equations in a

moving medium with refraction due to the mean shear. The mean shear alters the magnitude and direction

of the wave field.

For a homogeneous medium this equation describes an evanescent wave field determined by the initial

conditions. If the initial conditions are zero the solution remains zero; arbitrary non-zero initial conditions will

stimulate the eigenmodes of this equation. These are waves with phase speed equal to speed of sound (unity

in the present equations). The production (refraction) mechanism can amplify these modes. The production

mechanism consequently leads to secular behavior; the growing amplified modes, extracting energy from the

mean shear, will grow on a time scale to such that the oscillations will no longer be small on a scale of the

turbulent Mach number. (The above equations will also no longer be valid). This refraction mechanism is

likely to be the source of the very large compressible pressure fluctuations seen in the compressible DNS,

Blaisdell et al. (1991), Sarkar (1992). This possibility is the topic of research now in progress. Blaisdell et al.

(1993) have also reported on a tilting of dilatational surfaces as the DNS proceeds; a refraction mechanism

as indicated above would explain this behavior.

3.4. The concomitant vorticity equation. If one takes the curl of the momentum equation one

obtains the vorticity equation:

(35) D St
Dt---owoq + [-_--] ¢qij[wok,j V,,k + Wo,,k Yk,j ] = - [-_] ¢qij(psvk),j Vi,k.

The compressible fast modes are not irrotational (even if they start irrotational). It appears that it is

inappropriate to call the field acoustic: there are rotational modes that propagate with acoustic phase

speed which are stimulated by the initial conditions. Like the leading order compressible pressure field the

compressible vortical modes can be amplified by extracting energy from the mean shear.

3.5. Summary of two-timing results. A simple two-time analysis has indicated some very interesting

and simple models for the compressible portions of a turbulent flow. The fast compressible modes are

governed by a forced convective wave equation with production (refraction) terms; this can be understood

as a linear forced oscillator model for compressible effects. In a medium undergoing a simple homogeneous

shear the following linear wave equation describing the evolution of the initial conditions determining an

evanescent compressible wave field with acoustic phase speed:

(36) D D 2 st
p0- v2p0]+ 2 Y,,kPo,,k= O.Dto

This is essentially a third order linear oscillator, modulo mean convection effects. The equation contains the

production (refraction) term, V_,k P0,1k, which will produce secular growth that is a possible mechanism for

the large oscillations seen in the compressible DNS in the presence of shear.

4. Compressible turbulence modeling. An investigation, using recent DNS data, Blaisdell (1996),

of the scalings obtained for the pressure-dilatation and the dilatational dissipation by Ristorcelli (1997) is the

primary subject of this section. The representations given in Ristorcelli (1997) were obtained using simple

scaling arguments regarding the effects of compressibility, a singular perturbation idea and the methods of

statistical fluid mechanics. While the results are expressed in the context of a statistical turbulence closure,

they provide, with few phenomenological assumptions, an interesting and clear physical model for the scalar



effectsof compressibility. The Ristorcelli (1997) analysis is relevant to shear flows with negligible bulk

dilatation and small Mt _. These restrictions are also met in a wide number of engineering flows ranging from

simple shear layers of fundamental and practical interest, Papamoschou and Roshko (1988), as well as the

complex shear layers associated with supersonic mixing enhancement, Gutmark et al. (1995). In most of

these supersonic shear layers a Mach numbcr based on the fluctuating velocity of the fluid particle is small.

For example, in a Mach 4 mean flow with a turbulence intensity of 8 per cent has a turbulent Mach number

of Me = 0.32. The square of this turbulent Mach number, the appropriate perturbation expansion parameter

arising from the Navier-Stokes equations, Mt 2 ,,_ 0.1, is small. These restrictions are also met in the DNS of

homogeneous shear; the homogeneous shear is our laboratory experiment.

4.0.1. A pseudo-sound analysis for the effects of compressibility. The existence of a small

parameter allows some analytical results, in Ristorcelli (1997) a low turbulent Mach number expansion for

the compressible Navier Stokes equations produced a diagnostic relationship for the dilatation. To leading

order, the density fluctuations are given, in nondimensional units, by the solenoidal pressure fluctuations,

3'Ps -- Ps and the continuity equation becomes a diagnostic rclation for the fluctuating dilatation,

(37) -_/d = p_,, + VkPs,k.

One does not need to obtain a solution to the evolution equation for the compressible velocity field, w_,

in order to obtain, to leading order, its dilatation, d = wi,i- This is a useful result. The dilatation is

determined by local fluctuations of the pressure and velocity; it is the rate of change of the solenoidal

pressure field p_,jj = (v, vj),_j, following a fluid particle.

In a two equation turbulence closure an equation for the kinctic energy of the fluctuations, k, is carried.

In the kinetic energy equation two new covariances with the fluctuating dilatation appear: the pressure-

dilatation and the dilatational dissipation. Constitutive relations for the pressure-dilatation and the di-

latational dissipation can be found by taking the appropriate moments of the diagnostic relation for the

dilatation to produce, to leading order in Mt 2,

D
(38) -2_/(pd) -- _ <p_ps).

(39) 72 (dd) = (fisIbs) + 2(fi_vkps,k) + (vkps,kVqps,q).

The substituting of the solutions to p_,jj = (vivj),ij, into the right hand side of the above constitutive

relations has been used to obtain representations for (pd) and ec, Ristorcelli (1997).

4.1. The dilatational dissipation. The local dilatational dissipation is comprised of a slow and a

r s whererapid part: ec = ec + _¢,

16 Mt a e, [I_ + 6I_1_]
(40) =

^

Here R 2 = W2/S 2 is the mean rotation to strain ratio; R = 1 for a pure shear. The nondimensional

strain and rotation rates are given by: _2 = (Sk/e,)2, I]V2 -_ (Wk/e,)u where S --- _ and W ----

V/-_j Wij. The strain and rotation tensors are defined in analogy with the incompressible case, i.e. traccless,

= _k/c , whereSij ½[Vi,j +Vj,,-_D(fis], Wij = ½[Vi,j -Vj,,]. Mt is the turbulent Mach number, Mt 2 = 2

c2 = ,_ < p > / < p > is the local sound speed. The traditional definition of the Mach number is used,

10



2 ----_ 4k_usingthewellknownMt = uc/c, uc = 2k. The turbulent Reynolds number is given by Rt _ = 9%-g

Kolmogorov scaling es = au3/£ with a _ 1.

The constants, denoted by I_, in these expressions are not adjustable empirical calibration constant

obtained by matching calculations to obtain the trends in experimental data; they are fully specified and

measurable quantities. They are defined in terms of diverse integrals of the longitudinal correlation. The

reader is referred to Ristorcelli (1997) for additional details.

The behavior that is most easily explored -- in as much as the isotropic decay is the cheapest of DNS

to conduct is the scaling with turbulent Mach number. The dilatational dissipation scales as

(42) e_ _-, M2Es.

Figure 2 used in the discussion on initial conditions in §2 is relevant. With the "consistent" initial conditions

derived from finite Mach number asymptotics, a Mt 4 scaling is clearly seen. A similar Mt 4 scaling has been

seen in the EDQNM simulations of the Bertoglio group at Lyon. The Reynolds number dependence is not so

easily explored as, in DNS, the Reynolds number cannot be varied over a substantial range. In the EDQMN

simulations of the Bertoglio group a dependence on the Reynolds number is seen.

4.2. The pressure-dilatatlon. In the asymptotic analysis of Ristorcelli (1997) the following represen-

tation for the pressure-dilatation was, to leading order, obtained:

where

r D
<pd >= --XvdM 2 [PPk -- _ie + Tk](PT + fie + TT)] - pk M_t Xpd -_T,

3 4X_ 1 + 2IpdM 2 + _IpdM i 7('7 - 1)

l_d

3 41 + 21p M2+  I. Mi - 1)

2ISI.d = 5 + [35 + 2]
1 2 3

=  6(5 )(43)

Here T = [3S2+ 5W2]. The constants, denoted by I_, in these expressions are fully specified by the analysis.

For the present article, concerned as it is with the scalings of the compressible covariances, their exact values

are not relevant.

4.2.1. Pressure-dilatation in the isotroplc decay. For the isotropic decay the expression for the

pressure-dilatation becomes

(44) < pd > = XpdM_ _ .

Here fi has been set to unity. The sign of < pd > is positive indicating a net transfer of energy from potential

to kinetic modes. Rearranging, to isolate the scaling, produces

(45) <pd > _I_-- = Xpd --
Mt 2 es 1 + ]I_Mt 2"

Terms of order Mt 4 have been dropped. Earlier estimates given in Ristorcelli (1995), shown above, indicate

I_ = 0.5 - 0.3. The theory therefore predicts an asymptote for Xvd as the turbulent Mach number vanishes:

(46) X_ --_ 0.666 - 0.40 as M2t ---*O.

11



(5o)

is investigated.

integrals

The DNS results, shown in Figure 4, were provided by Blaisdell for three different initial turbulent Mach

numbers. As a service to the reader, the figure identifies two definitions of the turbulent Mach number: that

used by Blaisdell et al. (1993) in their simulations, M b, and that which comes from the traditional definition

of the Mach number. The present compressible DNS reflect a consistent set of initial conditions as described

above and in Ristorcelli and Blaisdell (1997).

The agreement with the DNS, shown in Figure 4, is very good. The analysis is consistent with the

DNS without a posteriori adjustment of constants. The actual values of the constant could in principle be

calculated from the DNS. As they axe expected to be weakly dependent on initial conditions, this course is

not followed further - what has been presented is sufficient for verification. Moreover, the slow portion of

the pressure-dilatation is nominal compared to the rapid portion which is the most important contributor

in the shear flows of interest.

4.2.2. Homogeneous shear. The pressure-dilatation in the homogeneous shear is now investigated.

The instantaneous pressure-dilatation is seen in Figure 5. Also shown are its averaged values following the

procedure of Sarkar (1992). Here the time integral of the pressure-dilatation has been taken: the vertical

axis being --_t f <-_->d(St). The oscillations in the pressure-dilatation associated with the relaxation from

initial conditions are not seen. There is, nonetheless, a build up of the oscillations which has been linked

to the compressible component of the pressure field, Sarkax (1992), Blaisdell and Sarkar (1993). A plausible

physical mechanism for this behavior was given in §3.

For homogeneous shear, the expression for the pressure-dilatation can be simplified. For simple shear

T = 882 one obtains

(47) <pd > = --XpdM 2 IRk - ¢s] -- k M 2 X_d 8_-_ _2"

Here S = S___kkFor Blaisdell's homogeneous shear, in which S = const., the expression can be rearranged
E$ "

Pk _ 1] -- 16X_d M_¢s (Sk) 2 D Sk
(48) <pd > = - XpdM 2 e_[-_ e, D(St) e_ "

Note that the coefficient of the first term, Xpd, ignoring the small slow pressure contribution, scales as

(sk)2; thus accounting for the definitions of the X'S, the pressure-dilatation can be rewritten asXpd ¢'J es

Pk r[l+ 1 D Sk].(49) <pd >_- -[a2( )2M2 es(_-_-s - 1)] 11 _--- 1 D(St) es
Es

As the flow evolves, it is expected that I F -_ const and D Sk 0 thus [1 + 1 D Ski __ 1. The

scaling of <pd > with the term in the first set of brackets will be investigated.

4.2.3. Pressure-dilatation scalings. The appropriately scaled integrals of <pd > will now be taken.

In this way one can establish whether the scalings predicted by the model are useful. In the latter portions

of Blaisdell's DNS, St > 10, about three to four eddy turnovers past initialization, a structural equilibrium

is approached. In this region the scaling, given by the analysis above, indicates

<pd>_-[a2(_-)2M2vs(_s -1)] I;
_S

1 (The time integral _ f )d(St) = fsT of diverse normalizations of will be taken. The

IO : jfST < pd >

12



A = _r <pd>es

/2=fs r

/3 ---_ST

I4 = fsw

<pd >

< pd >

< pd >

_2M2___ -- 11(s___k',2
t st _ Jk • I

will be computed from the data. The integrals are shown in Figure 5. The integration starts at St = 9;

the integrals are normalized by their values at St = 10. The integration is started at St > 9 so that non-

equilibrium cffects associated with the development of-the turbulence from the initial conditions has faded.

During such transient periods integrals in the pressure-dilatation model will not be constant. For St > 9

the quantity -_1 f Ird(St) _ I_ and _t _ _ 0 and the validity of the scaling can be satisfactorily assessed.

If the scaling suggested by the analysis of Ristorcelli (1995, 1997) is correct the last integral, /4, will be

approximately constant once an average is performed over a few of the oscillations. The period of time

10 < St < 16 corresponds to about one eddy turnover time.

4.2.4. The gradient Mach number. The largest relative collapse of the normalized < pd > integrals

is the collapse from /2 to I3. The I3 includes thc quantities 2 Sk 2Mi (-7-) • The quantity Mt(-_) can be

understood as a gradient Mach number. The pressure=dilatation is a strong function of the gradient Mach

number. Sarkar (1995) has defined a gradient Mach number as Mg = Sg/c; the transverse two-point

correlation of the longitudinal velocity is used as the length scale, L In this article g will be taken as the

traditionally defined longitudinal length scale that occurs in the Kolmogorov scaling: g = a(2k/3)a/2/¢s. In

which case a mean strain Mach number is defined:

(51) Ms St 2Sk M _ _,_=--=o,--- t=a _'Mt-_ Mr.
c 3 es

The approximation c_ _-. 1 has been made. In fact, the curve [3 overshoots the optimum collapse (a horizontal

line): the gradient Mach number is increasing faster than < pd >. The curve,/4, which accounts for the

Kolmogorov coefficient in addition to the scalings of Iz, is a further improvement.

4.2.5. The Kolmogorov sealing coefficient. A new feature associated with compressibility for this

class of turbulence closures, is the appearance of the Kolmogorov scaling coefficient, a. Mt and Sk are not

new quantities for describing turbulence in single point closures; a, however, is new. The quantities Mt and

s___kkare computed as part of a turbulence model simulation; a however is not. This distinction is made in_o
order to recognize a as a new independent quantity. The value of a can be thought of as describing large

scale structural aspects of the flow: after all, it relates the kinetic energy, its cascade rate, and the two-point

correlations.

The Kolmogorov parameter c_ appears because it is has been necessary to evaluate spatial two-point

integrals that were made nondimensional using _, Ristorcelli (1997). The dependence on the Kolmogorov

scaling coefficient appears when the integral length scale, g, is eliminated in favour of k and e which are

carried in standard turbulence closures. Such a procedure does not appear in developments for incompressible

closures the incompressible pressure-strain is independent of length scale.

The values used for a come from Blaisdell's DNS: the longitudinal integral length scale, t, k and ¢, are

calculated from the DNS and then the Kolmogorov relationship, e = ol(2k)3/2/_, is used to find a.

13



The Kolmogorov constant is thought to be a universal constant for high Reynolds number isotropic

turbulence; for nonideal finite Reynolds number anisotropic turbulence it is a flow specific quantity. It is

this fact that makes creating a singel point turbulence model difficult; a choice for c_ must be made and for

any given flow the choice is not, a priori, known.

4.3. Comparison with select pressure-dilatation models. The analysis of Ristorcelli (1997) has

treated the case in which dilatational fluctuations come from the turbulence and not an evanescent wave

field due to initial conditions. A good clean set of DNS calculations, uncontaminated by arbitrary initial

conditions, now exists for the homogeneous shear. Blaisdell's new calculations allow a study of the effects

of compressibility due to the non-zero Mach number of the vortical fluctuations. This is the simplest flow

possible and such dilatational fluctuations will be directly related to turbulence present in engineering flows

of interest. Comparison with published work on the pressure-dilatation covariance is now made.

Zeman's (1991) model is given by

1 D 1 <PP>-<PeP_>

(52) < pd > = 2pc2 Dt < pp > = 2pc2 ro '

where _-_ -= O.13(2k/e)M b. The variance < pep_ >, which represents an equilibrium level of pressure variance;

it is given phenomenologically:

c_M2t + M 4
(53) < p_pe > =

l + _Mt2 + Mta "

Zeman's modeling is not consistent with low M_ asymptotics: as M 2 ---* 0 Zeman's phenomenology indicates

(pp) _ (p_p_) --* 0. The pressure variance must, however, asymptote to the incompressible pressurc

variance, (pp) --* (PsPs), which will be a function of the energy of the turbulence. Zeman (199i) apparently

treats the model problem in which there are arbitrary pressure fluctuations due to initial conditions - the

initial value problem. The compressible effects due to the compressible nature of the turbulence itself is

missed. Over a time scale of the turbulence T,/M_, the pressure variance predicted by this model will have

equilibrated to (p_pe) and the pressure-dilatation will be zero. This is not seen in the DNS of either the

isotropic decay or the homogeneous shear. For this reason thc Zeman modeling is not further investigated.

Aupoix, Blaisdell, Reynolds and Zeman (1990) have, apparently, a similar problem in mind; their res-

olution is, however, more general. Their value of the pressure-dilatation is obtained from an evolution

equation:

(54) D M 2 D C2
D'--t < pd > = -C1 -_a -_ k - --r_ < pd > .

Again r, is a fast "acoustic" time scale. If one inserts the evolution equation for k, _tk = Pk -- E+ <pd >

one obtains:

(55) DD--t < pd >= -[(C1M_ + C2) < pd > +C1M2(Pk - _)]/_'a.

The density has been set to unity. On the slow manifold, characteristic of the decay, the fixed point solution

yields

C1M 2

(56) < pd >= C2 + C1M_ [Pk - e,],

which has a form similar to the present model.
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Sarkar's(1992)pressure-dilatationmodelfor flowswithoutbulkdilatation,isgivenby

2Pk 4
(57) < pd >= -0.15MI [Mtt - geol.

This is the same form of the model as used in the simulations of Abid (1994). In case of misunderstanding

it should be pointed out that there are no singularities at low turbulent Mach number in Sarkar's (1992)

model.

4.3.1. Model comparison - the isotropic decay. For the isotropic decay the Aupoix et al. (1990)

model, the Sarkar (1992) model and the present model given above are all, in the low Mt limit, topologically

similar. The three models are, respectively,

C1M{
(58) <pd> - C2 + ClM2t e,

(59) < pd> = 0.2Mr 2 c,

(60) < pd > = xpdM 

The coefficients for Sarkar and Aupoix are determined empirically by matching with compressible simulations;

for the present model the coefficent, Xpd, is related to a two-point integral and is obtained in a way not related

to any compressible experiments. Thc coefficients in the models Show <-<-<-<-<-<-<-<-<-<_,_ 1.25, 0.2 and .6 for the Aupoix,
Mge

Sarkar and Ristorcelli models. The DNS of Blaisdell, Figure 2, indicates a value _ 0.6 is the better value for

the coefficient.

4.3.2. Model comparison - the homogeneous shear. For the isotropic decay the Aupoix et al.

(1990) model, the Sarkar (1992) model and the present model are, in the low Mt limit, topologically similar.

For the homogeneous shear differences between the models become apparent.

ClM_ [Pk 11 ,
(61) <pd > = C2 + C1Mt 2 e_ --e_ -

2 Pk _],(62) < pd > = - 0.15M 

(63) <pd > = -- XpdM2t es[-_s -- 1].

The models have been arranged to display some of their similar features; certain groupings of parameters have

been emphasized. In case of misunderstanding it should be pointed out that there are no singularities at low

turbulent Mach number in Sarkar's (1992) model. The grouping in the models highlights an Mt 2 dependence;

the term in the brackets can be understood as representing a (weighted) departure from equilibrium. Note

that all three models allow for a change in sign of (pd}. For the Sarkar model the change in sign is dependent

on the turbulent Mach number. For Aupoix and Ristorcelli models the change in sign is simply dependent

on the whether production exceeds dissipation.

The present model, (63), features an additional dependence on the Kolmogorov scaling parameter, a, and

Sk This occurs through the definition of Xpd; recall that Xpd _ c_ t7"2.) •the relative strain 7-2" _2 _sk _2 Furthermore,

ill[ 8kthe combination t-g2 can be understood as a gradient Mach number; the combination XpdM 2 indicates a

proportionality of the pressure-dilatation to the square of the gradient Mach number.

A comparison of the different models with DNS is indicated in Figure 6. The simulation includes a

considerable "non-equilibrium" portion of the DNS. The nonconstant values of the integrals Ii have been

included in the present form of thc model: the values of the required Ii are calculated from the DNS from
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theirdefinition.At presentweareprimarilyinterestedin thescalings- allcurveshavebeennormalizedby
theirvalueat theendofthesimulation.

Zeman'smodeling,ZemanandColeman(1991),isalsonotappropriateforthehomogeneousshearwith
consistentinitial conditionsfor thereasonsgivenabove.DurbinandZeman(1992)havemadeseveral
improvementsto Zeman'soriginalideas- thevorticalfluctuationsarerecognizedasproducingdilatational
fluctuations,andthusDurbinandZeman(1992)is consistentwith lowMachnumberasymptotics.Their
closureismorecomplex;requiring,in additionto thesolutionanevolutionequationthepressurevariance,
butalsoanequationfora lengthscaleassociatedwith thepressurefield.Theirdevelopmenttreatsrapidly
distortedflowsandtheirmodellingandvalidationfocussesonflowswith largemeandilatations aflowin
whichthe _ is important.Thepresentdevelopmentis focussedoncompressibleshearflowsanda first
stepin thedevelopmentofacompressibleclosurethat mightexplainandpredictthegrowthratesuppression
seeninmanymixinglayerexperiments.Themixinglayerisnota caseofa rapidlydistortedflow.

4.4. Turbulence modeling conclusions. A simple low Mach number analysis of the Navier Stokes

equations has related the fluctuating dilatation to the solenoidal pressure field, RistorccUi (1997). This

is used to produce constitutive relations for the pressure-dilatation and the dilatational dissipation. The

scalings of the these expressions with turbulent Mach number, relative strain rate, gradient Mach number

and Kolomogorov scaling coefficient have been shown to collapse the DNS data.

The DNS -- with consistent initial conditions -- indicates that the dilatational dissipation scales as M_.

As such, the dilatational dissipation does not appear to bc an item of any concern in low turbulent Mach

number flows of interest to high speed (supersonic) aerodynamics. The dilatational dissipation with its M_

dependence certainly cannot explain the reduced growth rate of the compressible mixing layer, Thangam et

al. (1996a, 1996b). This is consistent with recent simulations, Sarkar (1995), Vreman et al. (1996), Simone

et aI. (1997).
2 2 Sk 2

The pressure-dilatation is found to be a nonequilibrium phenomenon. It scales as a M i (_-:.) [Pk/cs - 1].

For it to be important requires both 1) the square of the gradient Mach number, M_, to be substantial and

2) for the flow to bc out of equilibrium Pk _ ¢. The pressure-dilatation has been observed and is predicted

to be either positive or negative. Its dependence on the non-equilibrium nature of the flow, Pk _ _, indicates

that the pressure-dilatation can be either stabilizing or destabilizing. These trends appear consistent with

the DNS of Simone et al. (1997), in which such a dependence on Pk/¢, as related to and implied by the

evolution of the anisotropy, b12 -- _, from isotropic initial conditions, can be inferred.

The homogeneous shear is arguably the most non-equilibrium flow of the the diverse benchmark flows.

Accordingly the pressure-dilatation, for this class of flows, will be at its most important. In as much as many

aerodynamic flows are close to equilibrium, it also appears that thc pressure-dilatation with a -._ 1 cannot

explain the dramatically reduced growth rate of the mixing layer, Thangam et aI. (1996a, 1996b). A value

of a _ 1 is a reasonable guess for an equilibrium turbulence; an a _ 1 appears to account for about one fifth

of the reduction of the growth rate. A choice of a _ 2.5 would produce the observed reduction of the mixing

layer growth rate; this, however, would be no more accurate a representation of the physics than when the

dilatation dissipation was argued to account for the reduction of the growth rate of the mixing layer.

The present discussion treats only the "scalar" effects of compressibility - the changes in the turbulence

energy, k, due to the dilatational covarianccs in the energy budget. The dilatational covariances cannot

account for the reduction in the shear anisotropy, b12, or the normal anisotropy, bll, so important in the

production of the shear stress, (vlv21. To account for these more substantial structural effects appears

to require a compressible pressure-strain representation accounting for the effects of compressibility in the
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evolution equations for the Reynold stresses.

In the pseudo-sound analysis the pressure-dilatation is found to be a function of the Kolmogorov scaling

coefficient and this is anticipated to be an important (and potentially difficult) feature in single point closures

for the effects of compressibility. The Kolmogorov coefficient, a reflection of an equilibrium cascade and an

inertial subrange is, in general, a flow dependent quantity: there is little known about its dependence in

non-ideal -- anisotropic, strained, inhomogeneous -- flow situations. The appearance of the Kolmogorov

coefficient, in as much as it links the energy, the spectral flux, and a two-point length scale, is an indication

of dependence on large scale structure.

5. Summary. This article has described the consequences of low Mach number expansions of the Navier

Stokes equations for three different problems. In §2, time was spent developing physically relevant initial

conditions for DNS of compressible turbulence. From Blaisdell's DNS it was shown that initial conditions

can have a substantial effect on the scalings of the dilatational dissipation. It is clear that the DNS of

compressible homogeneous turbulence - in whihc the medium can sustain a wave field in addition to the

nonlinear advective field needs careful consideration.

In §3, a two-timing perturbation method indicated that the fast compressible modes of a turbulent field

are, to lowest order, described by a forced linear wave equation with refraction. Compressibility effects can

be understood, as indicated by the two-time perturbation analysis, using a forced linear oscillator analog.

Several points relevant to understanding initial conditions for DNS of compressible turbulence stand out:

1. Inconsistent initial conditions stimulate modes with acoustic phase speed.

2. Consistent initial conditions eliminate the oscillations associated with the initial value problem.

3. Modes with acoustic phase speeds are solutions to the initial value problem and cannot be referred

to as compressible turbulence which would have an advective phase speed.

4. Turbulence models for acoustic modes are as arbitrary as the initial conditions.

5. The initial value problem associated with inconsistent initial conditions which indicates an M 2

scaling for the dilatational dissipation. This is a scaling that is consistent with the presence of

an evanescent wave field due to the initial conditions. The dilatational dissipation due to the

compressible nature of the turbulence has an M_ scaling.

A single time small Mach number analysis was used to produce models for the covariances with the

dilatation. The analysis indicated the importance and role of several nondimensional parameters character-

izing the compressibility of the turbulence. The nondimensional parameters that arise from a pseudo-sound

analysis of weakly compressible turbulence are

1. The square of the turbulent Mach number: M{.

2. The gradient Mach number: Ms = }_M_.

3. The Kolmogorov scaling coefficient: a -- esi/u3c.

4. The departure from equilibrium: P_x _ 1.
_8

Some of these parameters have been identified in previous works.

From the turbulence modeling point of view the results of the pseudo-sound analysis have indicated that:

1.) Compressible dissipation will not be an important phenomenon for low turbulent Mach numbers as occurs

in many aerodynamic applications; 2.) The pressure-dilatation will only be important to the degree that

the flow is out of equilibrium. It might also be mentioned that the pseudo-sound analysis predicts, contrary

to expectations, a dilatational dissipation that depends on the Reynolds number. This is a precautionary

statement: it is as example of a situation in which extrapolating a model for the effects of turbulence based
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onDNSdatawouldbc inappropriatefor highReynoldsnumberflows.PresentlyDNScannotexplorea
wideenoughReynoldsnumberrangeand,asa consequence,Reynoldsnumberdependentphenomenacan
potentiallybemissed.

ThelowMachnumberpseudo-soundanalysis,in asmuchasit is supportedbytheDNS,appearsto be
a usefultool: it appearsto havesuccessfully

• Eliminatedthefastmodesassociatedwiththeinitial valueproblem.
• PredictedtheM_ scalings of the dilatational dissipation and its consequent neglectability.

• Predicted the scalings of the pressure-dilatation.

With the successes of such a rational procedure incorporating the more complex effects of compressibility

can be done with more confidence. Of particular interest is the very difficult problem of the pressure-strain

covariance. The importance the pressure-strain has been indicated in Blaisdell and Sarkar (1992), Vreman

et al. (1996), Sarkar (1995), Simone et al. (1997), Freund et al. (1997).
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